Формула полной вероятности
Параметры Ответы Теория Примеры Решение
Задача №1
Радиолокационная станция ведёт наблюдение за объектом, который может применять или не применять помехи. Если объект не применяет помех, то за один цикл обзора станция обнаруживает его с вероятностью р0; если применяет - с вероятностью р1. Вероятность того, что во время цикла будут применены помехи, равна р и не зависит от того, как и когда применялись помехи в остальных циклах. Найти вероятность того, что объект будет обнаружен хотя бы один раз за n циклов обзора.
Задача №2
Завод изготовляет изделия, каждое из которых с вероятностью р имеет дефект. В цехе имеются три контролёра; изделие осматривается только одним контролёром, с одинаковой вероятностью первым, вторым или третьим. Вероятность обнаружения дефекта (если он имеется) для j-го контролёра равна qj( j=1,2,3 ). Если изделие не было забраковано в цехе, то оно попадёт в ОТК завода, где дефект, если он имеется, обнаруживается с вероятностью р0.
Определить вероятности следующих событий:
А - изделие будет забраковано;
В - изделие будет забраковано в цехе;
С - изделие будет забраковано в ОТК завода.
Задача №3
Производится стрельба по цели одним снарядом. Цель состоит из трёх частей, площади которых равны S1,S2,S3 (S1+S2+S3=S). Для попавшего в цель снаряда вероятность попасть в ту или другую часть пропорциональна площади части. При попадании в первую часть цель поражается с вероятностью р1; во вторую часть - с вероятностью р2
; в третью - р3. Найти вероятность поражения цели, если известно, что в неё попал один снаряд.Задача №4
Имеется две партии однородных изделий; первая партия состоит из N изделий, среди которых n дефектных; вторая партия состоит из M изделий, среди которых m дефектных. Из первой партии берётся случайным образом K изделий, а из второй L изделий; эти K+L изделий смешиваются, и образуется новая партия. Из новой смешанной партии берётся наугад одно изделие. Найти вероятность того, что изделие будет дефектным.
Задача №5
Производится n независимых выстрелов зажигательными снарядами по резервуару с горючим. Каждый снаряд попадает в резервуар с вероятностью р. Если в резервуар попал один снаряд, горючее воспламеняется с вероятностью р1; если два снаряда - с полной достоверностью. Найти вероятность того, что при n выстрелах горючее воспламенится.
Параметры Ответы Теория Примеры Решение