Указание

При решении таких уравнений применяют чаще всего следующие методы: а) раскрытие модуля; b) возведение обеих частей уравнения в квадрат; с) разбиение на промежутки.

Пример 2.4.1. Решить уравнение

Решение

а) Так как по определению

то исходное уравнение равносильно следующей совокупности двух смешанных систем:

Из первой системы этой совокупности находим x = 2, а из второй x = –1.

b) Так как обе части исходного уравнения – выражения одинаковых знаков, то оно равносильно следующему уравнению:

или

Решая последнее уравнение, находим те же корни.

Ответ: –1; 2.